1,028 research outputs found

    P2Y receptors in the mammalian nervous system: pharmacology, ligands and therapeutic potential

    Get PDF
    P2Y receptors for extracellular nucleotides are coupled to activation of a variety of G proteins and stimulate diverse intracellular signaling pathways that regulate functions of cell types that comprise the central nervous system (CNS). There are 8 different subtypes of P2Y receptor expressed in cells of the CNS that are activated by a select group of nucleotide agonists. Here, the agonist selectivity of these 8 P2Y receptor subtypes is reviewed with an emphasis on synthetic agonists with high potency and resistance to degradation by extracellular nucleotidases that have potential applications as therapeutic agents. In addition, the recent identification of a wide variety of subtype-selective antagonists is discussed, since these compounds are critical for discerning cellular responses mediated by activation of individual P2Y receptor subtypes. The functional expression of P2Y receptor subtypes in cells that comprise the CNS is also reviewed and the role of each subtype in the regulation of physiological and pathophysiological responses is considered. Other topics include the role of P2Y receptors in the regulation of blood-brain barrier integrity and potential interactions between different P2Y receptor subtypes that likely impact tissue responses to extracellular nucleotides in the CNS. Overall, current research suggests that P2Y receptors in the CNS regulate repair mechanisms that are triggered by tissue damage, inflammation and disease and thus P2Y receptors represent promising targets for the treatment of neurodegenerative diseases

    Up-regulation of the P2Y2 receptor by cytokines in neuronal cells

    Get PDF
    Abstract only availableAlzheimer's Disease (AD) is characterized by inflammation and neurodegeneration in the brain due to the presence of extracellular amyloid beta (A β) plaques and neurofibrillary tangles. Microglial and astrocyte cells associated with these plaques and tangles have been shown to release cytokines in AD patients, which have a proinflammatory effect on the brain. The P2Y2 receptor (P2Y2R) is a receptor protein that is up-regulated in response to damage or stress in a variety of tissues, including blood vessels and salivary gland epithelium. Recently our laboratory has shown that activation of the P2Y2R enhances α -secretase-dependent amyloid precursor protein (APP) processing. APP is proteolytically processed by β - and γ -secretases to release neurodegenerative A β. Alternatively, APP can be cleaved within the A β domain by α -secretase releasing the non-amyloidogenic product, sAPP α, which has been shown to have neuroprotective properties. Primary neurons have low P2Y2R expression, however, it has been demonstrated that cytokines up-regulate P2Y2R in smooth muscle cells. Therefore, this study will explore if cytokines up-regulate P2Y2R expression in primary rat neurons and in SH-SY5Y human neuroblastoma cells. Primary rat neurons and SH-SY5Y human neuroblastoma cells were plated on glass cover slips 24 or 48 hours with individual treatment, or a combination of, human interleukin-1 β (IL1- β), tumor necrosis factor α (TNF α), and interferon γ (IF γ). P2Y2R activity was measured by increases in intracellular calcium concentration ([Ca2+]i ) in response to the P2Y2R agonist UTP. Results support the hypothesis that P2Y2R is up-regulated by cytokines in neuronal cells. Furthermore, real-time PCR results indicate a two-fold increase in P2Y2R mRNA after cytokine treatment. Therefore, activation of the up-regulated P2Y2R in stressed neurons generates a neuroprotective (sAPP α) rather than neurodegenerative (A β) peptide. These results could have a substantial impact on the understanding and treatment of neurological disorders such as AD.Life Sciences Undergraduate Research Opportunity Progra

    Extended performance solar electric propulsion thrust system study. Volume 4: Thruster technology evaluation

    Get PDF
    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentrator solar array concept and is designed to interface with the Space Shuttle

    Heritability patterns in hand osteoarthritis: the role of osteophytes

    Get PDF
    Abstract Introduction The objective of the present study was to assess heritability of clinical and radiographic features of hand osteoarthritis (OA) in affected patients and their siblings. Methods A convenience sample of patients with clinical and radiographic hand OA and their siblings were evaluated by examination and radiography. Radiographs were scored for hand OA features by radiographic atlas. The heritability of hand OA phenotypes was assessed for clinical and radiographic measures based on anatomic locations and radiographic characteristics. Phenotypic data were transformed to reduce non-normality, if necessary. A variance components approach was used to calculate heritability. Results One hundred and thirty-six probands with hand OA and their sibling(s) were enrolled. By anatomic location, the highest heritability was seen with involvement of the first interphalangeal joint (h 2 = 0.63, P = 0.00004), the first carpometacarpal joint (h 2 = 0.38, P = 0.01), the distal interphalangeal joints (h 2 = 0.36, P = 0.02), and the proximal interphalangeal joints (h 2 = 0.30, P = 0.03) with osteophytes. The number and severity of joints with osteophyte involvement was heritable overall (h 2 = 0.38, P = 0.008 for number and h 2 = 0.35, P = 0.01 for severity) and for all interphalangeal joints (h 2 = 0.42, P = 0.004 and h 2 = 0.33, P = 0.02). The severity of carpometacarpal joint involvement was also heritable (h 2 = 0.53, P = 0.0006). Similar results were obtained when the analysis was limited to the Caucasian sample. Conclusions In a population with clinical and radiographic hand OA and their siblings, the presence of osteophytes was the most sensitive biomarker for hand OA heritability. Significant heritability was detected for anatomic phenotypes by joint location, severity of joint involvement with osteophytes as well as for overall number and degree of hand OA involvement. These findings are in agreement with the strong genetic predisposition for hand OA reported by others. The results support phenotyping based on severity of osteophytes and a joint-specific approach. More specific phenotypes may hold greater promise in the study of genetics in hand OA

    Multi-Scale Simulation Modeling for Prevention and Public Health Management of Diabetes in Pregnancy and Sequelae

    Full text link
    Diabetes in pregnancy (DIP) is an increasing public health priority in the Australian Capital Territory, particularly due to its impact on risk for developing Type 2 diabetes. While earlier diagnostic screening results in greater capacity for early detection and treatment, such benefits must be balanced with the greater demands this imposes on public health services. To address such planning challenges, a multi-scale hybrid simulation model of DIP was built to explore the interaction of risk factors and capture the dynamics underlying the development of DIP. The impact of interventions on health outcomes at the physiological, health service and population level is measured. Of particular central significance in the model is a compartmental model representing the underlying physiological regulation of glycemic status based on beta-cell dynamics and insulin resistance. The model also simulated the dynamics of continuous BMI evolution, glycemic status change during pregnancy and diabetes classification driven by the individual-level physiological model. We further modeled public health service pathways providing diagnosis and care for DIP to explore the optimization of resource use during service delivery. The model was extensively calibrated against empirical data.Comment: 10 pages, SBP-BRiMS 201

    Resonant nonstationary amplification of polychromatic laser pulses and conical emission in an optically dense ensemble of neon metastable atoms

    Full text link
    Experimental and numerical investigation of single-beam and pump-probe interaction with a resonantly absorbing dense extended medium under strong and weak field-matter coupling is presented. Significant probe beam amplification and conical emission were observed. Under relatively weak pumping and high medium density, when the condition of strong coupling between field and resonant matter is fulfilled, the probe amplification spectrum has a form of spectral doublet. Stronger pumping leads to the appearance of a single peak of the probe beam amplification at the transition frequency. The greater probe intensity results in an asymmetrical transmission spectrum with amplification at the blue wing of the absorption line and attenuation at the red one. Under high medium density, a broad band of amplification appears. Theoretical model is based on the solution of the Maxwell-Bloch equations for a two-level system. Different types of probe transmission spectra obtained are attributed to complex dynamics of a coherent medium response to broadband polychromatic radiation of a multimode dye laser.Comment: 9 pages, 13 figures, corrected, Fig.8 was changed, to be published in Phys. Rev.

    Estimation of interdomain flexibility of N-terminus of factor H using residual dipolar couplings

    Get PDF
    Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e. FH1-3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1-3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC datasets, collected in media containing magnetically aligned bicelles (disk-like particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC datasets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of < 40 °. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3), could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1-4 complex

    Door locks, wall stickers, fireplaces: Assemblage Theory and home (un)making in Lewisham’s temporary accommodation

    Get PDF
    This paper explores resident experiences of life in PLACE/Ladywell, a “pop‐up” social housing scheme in London providing temporary accommodation for homeless families. Specifically, we consider barriers to, and assertions of, homemaking in this temporary setting through fixtures and fittings—a door lock, wall stickers, and a fireplace. The paper utilises assemblage thinking to understand homemaking within these time‐limited and constrained circumstances. Despite their seeming banality, fixtures and fittings offer a material, politicised, and lively means of studying the attempted and thwarted production of home by residents living in PLACE/Ladywell. The absence of door locks reduces parents’ ability to maintain privacy and intimate relations; restrictions on hanging pictures and other decorative measures are circumvented by the use of wall stickers; and a defiant decorative fireplace establishes a sense of home in a temporary setting. Together, these objects constitute vital elements in negotiations between fixity and impermanence in temporary accommodation
    corecore